Improved Separation and Collection of Charge Carriers in Micro-Pyramidal-Structured Silicon/PEDOT:PSS Hybrid Solar Cells

نویسندگان

  • Yuuki Sugano
  • Keisuke Sato
  • Naoki Fukata
  • Kenji Hirakuri
چکیده

Silicon (Si)/organic polymer hybrid solar cells have great potential for becoming cost-effective and efficient energy-harvesting devices. We report herein on the effects of polymer coverage and the rear electrode on the device performance of Si/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid solar cells with micro-pyramidal structures. These hybrid solar cells provided adequate generation of charge carriers owing to the suppression of reflectance to below 13%. Additionally, the separation of the photogenerated charge carriers at the micro-pyramidal-structured Si/PEDOT:PSS interface regions and their collection at the electrodes were dramatically improved by tuning the adhesion areas of the PEDOT:PSS layer and the rear electrode materials, thereby attaining a power conversion efficiency of 8.25%. These findings suggest that it is important to control the PEDOT:PSS coverage and to optimize the rear electrode materials in order to achieve highly efficient separation of the charge carriers and their effective collection in micro-textured hybrid solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due ...

متن کامل

C1nr10629e 3631..3634

A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300–1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is p...

متن کامل

Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells

Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophen...

متن کامل

Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation

The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the o...

متن کامل

Towards stable silicon nanoarray hybrid solar cells

Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017